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Abstract

Bitcoin exploded onto the internet scene in 2009 and became recognized as the first successful im-

plementation of a digital currency. In this paper, we aim to discuss the history, ideas, and motivations

behind digital currencies as a concept. We will motivate the issues that stopped the early adoption of

a currency and explain, in some detail, how Bitcoin solves those problems. We will discuss in depth

the algorithm and program flow logic involved in using Bitcoin and show complexity analysis of its

algorithms as implemented in the source code. Results indicate that the hashing process is O(N) and

transaction parsing operates at O(log (N)), while building the merkle tree O(N2).

1 Introduction

Digital currency (or: electronic money) has been an attractive concept dating as far back as the late 20th

century, when the world experienced the widespread proliferation of the internet and personal comput-

ing. The advantages were readily apparent – a well implemented digital currency could facilitate trans-

actions easily over the internet without any direct form of contact between parties. One would no longer

need the bank to act as a third party to protect money or to mediate transaction disputes.[1] The transac-

tion would be quick and painless – a debit from an account on one PC to a credit on another and one that

could be easily reversible. A well implemented digital currency can preserve anonymity in transactions

since the two parties don’t need to have any knowledge or contact, just the intent to exchange goods for

a store of value. The transaction fees associated with storing money in a bank would be eliminated since

the PC/internet would act as a wallet for the user and, unless the user wants to charge themselves, thus

no need for a fee. Moreover, it meant there could be a greater integration of world economies through the

internet; a digital currency could allow for fast money transfer across countries, oceans, and continents

without the wait times or latencies associated with depositing, withdrawing, and converting between fiat

currencies of overseas institutions. [1]

What happened instead was a mapping of current physical transactions onto a digital landscape.

Widely adopted cryptocurrency was mostly usurped by the rise of digital banking and escrow services.

The banking industry got extended onto the internet and users turned to having to rely on third parties

to verify transactions. To make purchases over the internet required a trusted third party financial in-

stitution (a bank), acting as the holder of a user’s money, authorizing the transfer of money to a vendor.

There is no direct money transfer between two people – only between a third party authorized to act as

a monetary exchange on the internet and the vendor. This is the mapping of physical transactions on

a digital landscape, only that exchanges on the internet are more limited than they are in the physical

world. Transaction fees didn’t disappear, waiting times didn’t vanish (many transactions are sent in es-

crow or need to be verified e.g. Paypal), and fast money transfer still takes between one week to a month.

And then, finally, in 2009 a person operating under the pseudonym Satoshi Nakamoto published

a paper outlining the requirements and algorithms necessary to implement the first successful digital

currency – Bitcoin. As it turns out, there were myriad technical challenges that needed to be overcome

before a digital currency could be viably implemented. In this paper, we aim to give a strong background

motivating the ideas behind the digital currency problems and how Nakamoto and Bitcoin solves those
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problems. Herein, we illustrate how Bitcoin works and give practical results regarding the algorithms it

uses to solve digital currency problems.

2 Problem

The biggest problem that faced digital currency is called the double-spending problem.[1][2][10] Double-

spending refers to the act of using one piece of currency to perform two transactions. What is important

to note here is that this is not the same as splitting the currency into multiple parts.[2] An example of

double-spending is using one dollar bill in two different vending machines to get multiple items for the

same dollar. This became an issue in digital currency because records and files that stored transaction

history were susceptible to corruption or duplication. With a virtual transactions, there’s never a true

guarantee that someone has transferred their file of currency without keeping a copy for themselves;[1]

it would require the system to be entirely free of corruption. Double-spending is the main reason why

financial transactions online are done through trusted third parties – there is someone verifying that a

transaction has occurred and money has changed hands. Of course, we note that a successful digital

currency shouldn’t need to rely on a third party.[1]

Effectively, this double-spending problem boils down to an issue of trust between two parties. One

party can’t ensure that the other party isn’t acting in an untrustworthy manner, i.e. spending their money

in multiple places. The only way currencies, economies, and monetary systems work is if there is trust

in the system.[2] Without trust, there is no way to exchange a store of value for goods – it’s back to direct

exchange. So the algorithmic problem that arises here is actually an old problem known in computer

network known as Byzantine Generals.[10]

Byzantine Generals is a problem that uses a framing device of two generals attempting to attack an

army to illustrate the issues that arise when trying to communicate information over a network connec-

tion that is unreliable. The story goes as follows. Two generals are attempting to coordinate an attack

against an enemy army. General A needs to send a message to General B to tell them that they need to

attack at dawn. A messenger for General A is dispatched and sent to General B. However, there is no guar-

antee that General B received the message from General A’s messenger. General B can try to abate this

by dispatching another messenger to General A to say that he agrees with the arranged attack time. But

there’s no guarantee his message reaches General A. And the problem goes on like this ad nauseum.[10]

Digital currencies fall short the above problem exactly. The bitcoin solution to this problem is to

announce all transactions publicly, eliminating the need for an omniscient, trusted third party.[8] Parties

attempting to communicate with each other perform proof-of-work. The work proof requires nodes in

the network to store complete global history locally.[1][2]

Proof-of-work schemes are not new concepts. A simple example of proof-of-work would be CAPTCHA

image schemes. When a user wants to sign up for an online service, they will encounter some CAPTCHA

bar asking them to enter the characters in an image. By entering the characters, a person is doing work

to prove that they are human and not a robot. On the computer side, proof of work is done by asking a

computer to do some calculation and send it back.
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To keep the generals synchronized on everything is going on requires a global history.[8] No party

should act without referring to the history to see what the other party has done and sees confirmation

of what the other party will do. This global history is meant to be expanded to every actor in the global

market, forming a history for every user that can be checked to determine how much money every person

has by checking their transaction history and adding it all up. So now currency is no longer files that

are transferred between people (like dollar bills), but additions and subtractions on a public ledger.[8]

Transactions are added to the ledger when people agree that have transactions have taken place. So

together, the proof-of-work and the global history solve the Byzantine Generals problem.

However, the public history gives rise to another issue: false histories.[1][2] The double spending

problem arose from the inability to trust the actions of the actors in the economic system. But now that

there is a history, what stops the untrustworthy actors from creating false histories and collaborating on

it by verifying false transactions? If there are collaborating liars that can perform the proof-of-work in

unison to lie then the system doesn’t work. So this is two problems, actually: one problem is making

transactions using other people’s money and the other problem is that there isn’t a unified agreement on

a true history.[1]

Satoshi’s Bitcoin employs simple solutions to these issues. First, to ensure that one party doesn’t

make transactions for another party, the system should implement public-private key cryptography. A

user can sign a transaction with his private key and it can be verified with his public key to show that the

user is agreeing with the money being taken or received.[9] As far as the false history problem, follow the

longest chain of verified history and have everyone jump to work off of that history when new history

comes in.[1] In this way, it is very difficult to manufacture a false history. Since there are public and

private keys, if some attacker wants to present a false history, they need to work off a transaction that

was first signed off between two parties. The attacker would then start doing work from that point in

the history chain and have to catch up to the current history.[1][2] This is a very expensive, very wasteful

process[2] – assuming there are honest people working off the most recent history then it would be very

hard to catch up enough to overtake and invalidate it. It would require a computing power >50% of the

total power of the network.[1]

There is one final issue that is a product of Satoshi’s solution – how can the system incentivize others

to verify transactions? The verification process is inherently wasteful; a computer must perform some

long, otherwise wasteful calculation as a proof-of-work to add a transaction to the global history. People

who verify transactions must give up electricity to do the proof-of-work, and that electricity costs money

in the physical world.[2] So, as a means of incentivizing transaction verification, anyone who successfully

verifies transactions are rewarded with a set number of bitcoins – the units of the digital currency – as a

reward for contributing to the history.[1] Rewarding these people with bitcoins also allows the system to

introduce new coins into circulation.[1][2]

In summary, digital currencies suffered from a double-spending problem that is similar to the struc-

ture of the Byzantine General networking problem.[1] To solve that issue, people agree on a global history

of transactions between all users in the system.[8] To add transactions to the history, users in the sys-

tem need to a proof-of-work problem to verify that a transaction is legitimate before it can be added to
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the global history.[1][2] A public-private key cryptography system is implemented to prevent users from

making transactions with the money of other users and to associate transactions with a person.[1][2][9]

False histories are dissuaded by having the network follow the longest verified history in the network.[1][2]

People are incentivized to work on verifying transactions by being rewarded with bitcoins for their work.[1]

3 Bitcoin Terminology

The ideas outlined in the Problems section are a high level abstraction of the concepts outlined by

Satoshi in his paper. In this section, we will explain how the solutions are implemented. Specifically,

we will look at the components that make up the global history and the proof-of-work scheme and de-

scribe them in detail.

3.1 Transaction

Figure 1: Block diagram of a typical Bitcoin transaction process

Pictured above is the general representation of a transaction inside the Bitcoin network. Transactions

are the first building block of our global history network and they are composed of a series of "ins" and

"outs" – an "in" is the money going to an owner and an "out" is the money leaving an owner. A given

transaction will generally contain a random number of "ins" and "outs"; there is no fixed amount – it

depends on the amount of money present in a user’s wallet and the amount they are trying to send. The

components listed in the diagram are:

• Owner A’s public key. Owner 1 is the person receiving/sending something in a transaction.

• Owner 0’s Signature. Owner 0 was the previous holder of some amount of currency that was signed

over to Owner 1. The transaction contains this amount so that it can be verified where it came from.

• Hash. This is a hash of the previous transaction. This is done to assist in implementing a history

between transactions; the hash of the transaction is used to easily check if an entire transaction

occurred and used to effect later in constructing a Merkle tree.
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• Owner A’s private key. Owner 1 uses to tell the world that they approve of the transaction.

3.2 Block

A block is an entry in the global history system. It is pictured below.

Figure 2: Breakdown of transactions included into the block header

An individual block what the miners perform the proof of work problem to solve. Miners are re-

peatedly hashing the block information in an attempt to obtain a hash value that can be considered a

potential match to a block. The picture above represents Satoshi’s view of the block and not what is ul-

timately implemented by Bitcoin. It is more educational to examine the hardware structure of the block

instead since that is what needs to be hashed.

In hardware, the block is represented as an 80 byte array composed of the following components:

Field Purpose Updated when. . . Size

(Bytes)

Version Block version number You upgrade the software and it

specifies a new version

4

hashPrevBlock 256-bit hash of the previous

block header

A new block comes in 32

hashMerkleRoot 256-bit hash based on all of the

transactions in the block

A transaction is accepted 32

Time Current timestamp as seconds

since 1970-01-01T00:00 UTC

Every few seconds 4

Bits Current target in compact for-

mat

The difficulty is adjusted 4

Nonce 32-bit number (starts at 0) A hash is tried (increments) 4

Table 1: Components to the blockheader data structure
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From this table, we can ascertain that a block contains the following elements:

• Nonce. This is a 32 bit number that is routinely incremented when searching for a hash solution.

Its only purpose is to be changed on each hash iteration.

• Merkle root. This is the root of the Merkle Tree, a binary tree constructed of hashes of the trans-

actions that are being verified with that block. This Merkle root is how the transactions are linked

into the block.

• Previous hash. This is the hash of the previous block. If we are working off a global history, then

the current history should have an idea of what happened before so that the current block can be

traced back to where it came from.

• Time. This is used to determine at what point the block was verified. Note: The timestamp on ver-

ified blocks are often unreliable because clever miners will vary the timestamp once they exhaust

all nonce values.

• Bits. This is a misleading name meant to refer to the current target as a 4 byte number. The target

is what miners compare to when they are searching for a block solution; if the hash attempt is less

than the target then a successful block has been found.

• Version. This is the current software version that Bitcoin is running at.

3.3 Blockchain

The blockchain is the distributed global history that was alluded to in the Problems section. It is pictured

below

Figure 3: Full chain of blocks that show the proof-of-work chain

The blockchain is a connection of blocks together that form the proof-of-work history chain. Blocks

are chained together via their hash values; the way to find the previous block in the chain is to check the

hash of the block header until a match is found.
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4 Data Structures & Algorithms Employed

The Bitcoin process is fully decentralized, where all of the work to maintain the integrity of the network

is based off of the peer-to-peer structure of the mining network. The structure of the Bitcoin blockchain

requires that all miners keep a copy of the working Merkle tree ( the longest chain of agreed blocks). The

file size is large ( 15 GB) but necessary to verify transactions. The SHA256 hashing algorithm is used to

find possible solutions to be awarded Bitcoins.

4.1 Merkle Tree

A Merkle tree is a binary tree where every non-leaf node is a hash of its immediate children. Refer to the

figure below:

Figure 4: Merkle Tree block diagram

So unlike a regular binary tree, the insertion process doesn’t start with the root. Instead, all of the

(planned) insertions begin as leaves of the tree. For our process, the Data blocks represent transactions

and NOT blocks in the blockchain. In the pre-insertion stage, all inserted values are paired up in sets of

2; if there is an odd number of leaves then that leaf is paired up with itself. Insertion begins immediately

from the leaf down; each transaction is hashed and inserted directly into the tree at the bottom. Then,

a recursive process occurs to implement the tree. The paired leaves are concatenated with one another

to form a double length value and is then hashed to form the parent of the concatenated children. This

process continues until, finally, there are only two hashes left to concatenate and subsequently hash. At

that point, the final hash and inserted value into the tree is the root of the Merkle tree. So, the operations

for constructing the tree are:
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• Gather up the transactions you want to verify

• Hash them

• Insert as leaves

• Concatenate

• Hash and insert recursively until the root is obtained

4.2 SHA256

The SHA256 hashing algorithm was initially developed by the National Security Agency in 2001. It is

a one-way hashing algorithm based off of the first 32 bits of the fractional parts of the square roots of

the first 8 primes (floating point values) combined with the first 32 bits of the fractional parts of the

cube roots of the first 64 primes. These values are algorithmically interesting due to their lack of relation

to other values. By design, SHA256 guarantees that the output will always be 256 bits long. The hash

is generated by taking the initial values and combining it with the data to be hashed through bitwise

operations such as AND, XOR, and NOT. If the data to be hashed is larger than 512 bits, the data will be

split into chunks where each chunk goes through the hashing process and is then added to the initial

values thus creating new initial values for the next chunk. Due to this process, the time to hash a file is

proportional to the size of the file.

To relate this all to Bitcoin, we utilize the SHA256 algorithm to build carefully designed hashes that

are smaller than the current target. It is impossible to guess a combination that would achieve a guess

smaller than the target, instead we attempt to try as many guesses as possible to increase our chances at

winning the current target. Our experiment will explore the speed it takes to hash the block header and

the opportunity of winning a block potentially worth up to $10,000.

It is important to note that all hashing done in the Bitcoin process refers to a double application of

the SHA256 algorithm; every hash of SHA256 is hashed again with SHA256.

4.3 Introduction to Mining

The structure that enables Bitcoin mining is important to the design of the system. The mining process

is supported by a system of data structures and algorithms that must be enormously scalable to support

huge transaction volume. Mining is the main algorithmic point of interest in Bitcoin and is central to the

operation of the network.

First of all, mining is not really the act of trying to get Bitcoins; that is secondary. Mining is rather the

essential process that must be performed for monetary exchange to take place. The only way transac-

tions can be verified in this network is for someone to do work – that work is mining. If there is no one

mining for Bitcoins then transactions will never be verified; the system will have ceased to function. The

process list is as follows:

1. First, a miner will select a number of transactions that they want to verify.
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2. With the transactions, the miner will compute a Merkle tree and a Merkle root.

3. Then, the miner will build the 80B block header that was described in Bitcoin Terminology, start-

ing with a nonce of 0.

4. The miner will begin double hashing the block header.

(a) If the hash is less than the current target, a block is created and added to the blockchain. The

miner is rewarded with a set number of bitcoins.

(b) If unsuccessful, the miner will increment the nonce and return to step 4.

i. If the nonce is fully exhausted, the miner will change something else (the timestamp or

the number of transactions) and start hashing over 232 nonce values again.

(c) If a new block is found before the miner succeeds, the miner needs to update their history

and start over since the block needs to have the hash of the most recent block in it.

The mining process is illustrated in the flowchart below.

Figure 5: Flowchart for mining Bitcoins

4.3.1 Pseudocode
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while ( /*No Change in Prev Hash Block */ )

{

// Compute Merkle Root

Gather a Block of Unverified Potential Transaction from Pool

Build Merkle Tree from Selected Transactions

Return Block Header from Merkle Tree = hashMerkleRoot

for (Nonce = 0 ; Nonce < 4294967296; Nonce ++)

{

block = concat ( Version , hashPrevBlock , hashMerkleRoot , Time , Bits , Nonce ) ;

hash = SHA256(SHA256( block ) ) ;

i f ( hash < B i t s )

// Winning block , Broadcast to a l l other nodes

}

// Modify Block Header

time = CurrentTime ( ) ;

}

5 Experiments

In order to examine the algorithmic performance of Bitcoin hashing, we first set up the Bitcoin block

header structure to incorporate into the hash. As a reminder: the header is comprised of a version num-

ber, a hash of the previous block header, the Merkle root, the current time, the current target, and a nonce

that is updated at every iteration of the hash. To this end, we considered a few iterations on Bitcoin com-

plexity analysis:

1. The Merkle tree build time is a one time expenditure. But it can still be computationally exhaustive

if the number of transactions is quite large. How does the time to build the Merkle tree and extract

its root hash vary with the number of transactions and can its effect on solution time be significant?

2. The target/difficulty is the bottleneck to solving a block. How does the time to find a block vary

with increasing difficulty?

3. The difficulty affects the solution time, but the transactions affect the build time. What is the com-

pound effect of these two processes superimposed on each other? When does one overtake the

other?

First, to implement any of this in a way that is experimentally viable requires some relaxation in the

block header structure. The current difficulty of the system is far too large for us to measure real-world

complexity. Bitcoin adjusts the target such that a block is solved every 10 minutes. There are miners

out there working at rates much faster than a normal PC can handle so getting a solution isn’t feasible.

Instead, we opted to set up a Bitcoin example simulation. This assumes the following simplifications:
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• The version number is always "1".

• The current time is always updated to be the same as the program runtime.

• The difficulty is a variable amount that the user sets.

– Since the operations need to be performed on byte arrays instead of integers, we used the

number of leading zeros as the difficulty compare points for our experiments. This is a much

simple solution than comparing to the target. So a solution is found when there are N leading

zeros.

• The number of transactions is a variable amount that the user sets.

– The number of inputs and outputs to a single transaction is random. As such, the transaction

hashes are constructed by creating a random integer array of length equivalent to the number

of transaction. The random value is equal to the average number of inputs and outputs. This

is important since the storage varies with the number of inputs and outputs.

• The previous hash is just a SHA256 double hash of a random number between 1 and 1000. Since

we don’t have prior history, we just create a random hash to work with.

Implementing the first experiment meant implementing the Merkle tree structure. It is important to

keep in mind that we are most interested in the hash of the root and not so much the values that came

before it. Additionally, no mining is performed on modern computers – they are performed on ASICs

and FPGAs whose language is C, so no object oriented concepts are available to use. On hardware, it is

fastest to implement the Merkle tree as an ArrayList (vector). The transactions are varied and the time is

recorded.

The second experiment requires varying the loop condition for the number of leading zeroes on a

hash attempt. This is repeated, random hash attempts until a solution occurs. Because solutions occur

randomly, we opted to perform a 20 trial average to get an idea of how long it takes on average for a

solution to be found for a given difficulty. The third experiment requires that the difficulty be fixed at a

specific value and the total runtime be measured as the number of transactions changes. Once we are

done iterating over the transactions, the difficulty changes and the process repeats. Since the Merkle

runtime and the hashing run time depend on different variables, it will take a 3D plot to figure out how

they affect each other.

6 Results and Analysis

6.1 SHA256

Before moving into the results of note, we will take time here to examine the runtime effect of hashing to

see if it has any impact on program complexity. The results are below.

As shown in the graph, the time it takes to execute N hashes increases linearly as N gets large. This is

due to the fact that we only continually hash a modified 80 byte structure. The time it takes to hash an
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object is constant, and is being attempted N times. If the size of the header were to vary, we could expect

that this curve would not be linear.
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Figure 6: SHA256 hashing time for N trials

As the block difficulty changes, the number of hashes needed to solve the block varies. The higher

the difficulty value, the larger the number of hashes. Since guesses are generated randomly, the number

of hashes to solve blocks with same difficulty also varies. In our experimental testing, we ran each case

20 times and took the average number of hashes for the results. Besides difficulty level, the number of

transactions in the block also affects the number of hashes needed to solve the block. Since the hashing

time is proportional to the number of hashes, more hashes result in longer time to solve the block. From

the data points alone, the number of hashes required to solve a plot appeared to be either exponential

or quadratic. As such, we did two least squares fits to see which one was a better fit. As it turns out, the

exponential fit performed better.

As for why, we had to consider what the computer is being asked to do. It is the attempt to impose

order on a random process, i.e. require a non-random leading component (the string of zeroes) come

in a fixed order. The best case analysis is that the hashing obtains the right number of leading zeroes

immediately leading to O(n) = 1. The worst case analysis is a little different. It requires that, over a

natural set of numbers, we can quantify the probability of obtaining a solution is, on average:

P = 1
232
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Assuming equal probability chance of obtaining an answer. The result follows naturally from as-

suming a Poisson random process. This assumption is valid given the fact that the path to solution is

effectively like that of a lottery, where no matter how many attempts one makes that never changes the

probability of success.

Note that this follows The difficulty modulates the answer somewhat, so:

P = 1
232∗D

D denotes the difficulty. We hash in linear time, so on average we should take:

E = ht
232∗D .

where h is the hashrate and t is the time spent hashing. E is now the average reward rather than the

average probability.

As D increases, the probability of finding a solution decreases as a scalar multiple of an exponen-

tial quantity. While we hash linearly, the attempts at finding a solution increase exponentially because

that multiple reduced the chance of finding a solution by an exponential factor. This is the worst case

scenario. On average, it will be something weaker but tends towards this same behavior. This is why

the curve appears exponential in both the hashrate AND the time; they are modulated the same way,

probabilistically speaking.
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Figure 7: Average number of hashes required to win a block as the difficulty increases

6.2 Merkle Tree

The number of transactions selected in Merkle Tree construction has a significant impact on construc-

tion time. We constructed Merkle Trees using the number of transactions typically hashed by actual
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bitcoin miners, between 100 and 1000. In the world of Bitcoin mining, time is money. So miners have

an incentive to minimize the amount of computational time they spend doing anything other than gen-

erating potential blockchain guesses. Since the number of transactions hashed has no impact on the

probability of a successful guess, transaction fees are the only incentive that a miner has to generate a

Merkle Tree with more than 0 transactions.

Empirical results show that growth rate of Merkle Tree build time is O(N∗ log (N)). However, this

contradicts the theoretical analytical explanation below:

The height of the Merkle Tree having N nodes is about log(N) since the Merkle Tree shares many

characteristics with the binary tree data structure. At the same time, the Merkle Tree is more balanced

than the normal binary tree, since each hash is a double hash, meaning each non-leaf node has two

children and the path length for each leaf is almost the same. In order words, Merkle Tree is more like a

complete binary tree or full binary tree depending on the number of transactions in the tree. Inserting

a new node (or transaction) into the Merkle tree with size N would take about O(log (N)) complexity.

Building a Merkle Tree requires N insertions, so the total complexity is about O(N∗ l og (N)). Since the

high of the Merkle Tree changes from 0 to log (N) while building the tree, the exact form of complexity is

not c ∗N∗ log (N).

However, from the curve fitting of our result, we found the complexity for building the Merkle Tree

matches with the form: a+b∗N+c∗N+d ∗N2 where a, b, c, and d are constant (please see fitting curve

and function in Figure 8). The big O notation for it is also O(N2).

The reason for this contradiction lies in the actual runtime optimizations occurring when we build

our Merkle tree. Bear in mind that we are measuring computation time, not the total number of op-

erations. As the Merkle trees grow larger, the memory needed to perform our operations also increases.

These increases in memory utilization are leading to lower utilization of spatial locality in processor-level

caching. As out memory footprint grows, we are growing beyond the borders of our available processor

cache. As this happens, we will begin to notice a measure of delay associated with cache misses. Now,

if we were to build the Merkle tree for an obscenely larger number of operations ( 106), we would see

a more consistent linearithmic result. However, because the number of operations hashed into a single

merkle tree never exceeds 3000, such analysis is not very useful within the domain of bitcoin mining.
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Figure 8

Our results show that relatively little time is spent constructing the Merkle Tree, as compared to ac-

tually computing a hash that below target. Even for unusually large Merkle Trees (N = 1000) hashed at an

artificially low difficulty (D = 81), the time spent computing a successful hash is 15 times higher. We can

expect this ratio to rise further because the growth rate of Merkle tree build time is O(N2), while growth

rate of difficulty to successful hash rate is O(eD) or O(2N). We can conclude that although growth rate

is quadratic, the cost of Merkle tree build time plays a relatively minor role in the overall time cost of

mining.
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Figure 9: Average merkle tree build time as transaction count increases
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6.3 Effects of Running in Real-Time

The 3D plot below is obtained from fixing the difficulty and varying the number of transactions and

then fixing the number of transactions and varying the difficulty. To the effect of measuring whether the

Merkle build time has a significant effect on the time to solution for a hash level the consensus is: not

really. While the number of transactions have an effect on low difficulty levels when the number of trans-

actions inccluded are high (1000), that effect is mitigated by the time the difficulty reaches higher peaks

and really takes off. The exponential growth in time dwarfs the one-time contribution of the quadratic

transaction build.
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Figure 10: As can be seen, the overhead from adding transactions to the merkle root becomes marginal
as the difficulty increases

7 Discussion

7.1 Transaction Issues

In theory, it would make sense for miners to aggregate as many transactions as possible and try to verify

them as quickly as possible. But in practice, miners don’t do that. The problem is that Bitcoin is a lottery

system. Whoever can get the solution to the block first wins and all other takers must abandon their claim

to the prize and start working on another block. As such, there is a lot of competition between miners

rather than collusion. Miners are at odds with each other to obtain the block solution first. Although the

process is entirely random, there is something to be said of the effect of time and hashrate. Recalling the

expected value of return:

E[x] = ht
232∗D

The time and hashrate increase the expectation of reward. Any time given up means reducing the
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chance of reward. So it is in the miners best interest to both hash more quickly and to increase the time

spent hashing. However, if the miners are collecting a large number of transaction then the time spent

before hashing is reduced. If miner A decides to aggregate 1000 transactions ( 14 seconds on a CPU)

and miner B decides to just take 1 transaction( 0 seconds), then miner A lost 14 seconds in the attempt

for a solution. With typical machines hashing at well over 1GH/s, that means the miner missed 14*109

attempts at finding an answer as compared to miner B. This is a huge issue! In fact, most miners have

realized this and typically shoot for somewhere between 200 400 transactions to accept in a given block

rather than taking all thats available in memory. As such, our results lend an understanding to some of

the unspoken nature of miner dynamics in Bitcoin.

Another effect aggregating a large number of transactions has a miner is that it increases the proba-

bility of orphaned blocks. An orphan block occurs when two different miners obtain a block solution at

approximately the same time with similar transactions being verified inside each. What happens is that

this creates a fork in the blockchain; users will end up working off of one of the two sets of blocks with-

out knowing which one is better. At some point, one of the block histories will catch ahead of the other,

resulting in the other block being abandoned. This abandoned block is referred to as an orphan block.

When an orphan block occurs, the reward money from those blocks is lost and any transactions inside

them not verified by the longest history are sent back to the memory pool. Part of the reason orphaned

blocks can occur is network latency due to building the Merkle tree. Miners hate to lose block oppor-

tunities, but they hate even more to lose money they thought they won. Many of the orphaned blocks

in the blockchain have a higher number of transactions than the usual 200 400, lending credence to the

idea that Merkle tree construction attributed to slowing down the miner. There’s cause to believe this; a

lot of transactions would increase network latency when being sent back to the blockchain, delaying the

time it takes to accept a block.

7.2 Effect of Difficulty on Hashing

In the mining process, 80B blocks are passed through the SHA-256 hashing algorithm. The hash value

that is returned is then compared against a difficulty metric. The returned value must be less than or

equal to a 256-bit target. The current target is known by all users in the bitcoin network. It’s value is

calculated so that, on average, 1 block is hashed every 10 minutes. At this rate, 2016 blocks should be

successfully hashed in a 2 week period. Once 2016 blocks are hashed, the 256-bit target value is (poten-

tially) adjusted so that based on the rate of the previous 2016 blocks hashed, the 2 week target would

have been met. The target is never modified by more than a factor of 4.[7]

Difficulty represents a ratio of entropic likelihood of a successful block hash at the current target as

compared with the largest legal target value. The largest target is the value by which successful hashing

is easiest, since your hash needs to be /em less than or equal to that value.[6] The formula for difficulty

is as follows,

Di f f i cul t y = l ar g est_leg al_t ar g et
cur r ent_t ar g et .

Essentially, difficulty is a simple numerical ratio of the easiest possible target over the current target.
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The maximum target used by SHA256 mining devices in hex representation is:

0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

However, since Bitcoin stores the target as a float, the value is truncated:

0x00000000FFFF0000000000000000000000000000000000000000000000000000

This leads to 2 methods of calculating difficulty: pool difficulty based on full precision (pdiff), and

the difficulty as estimated by Bitcoin clients (bdiff).

For example, the current target (4/11/2014, 21:48) is:

0x0000000000000000B3AA00000000000000000000000000000000000000000000

Therefore, the current pdiff is:

0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0x0000000000000000B3AA00000000000000000000000000000000000000000000 = 6119819470.16

And the current bdiff is:

0x00000000FFFF0000000000000000000000000000000000000000000000000000
0x0000000000000000B3AA00000000000000000000000000000000000000000000 = 6119726089.1281

From the above information, we can conclude that the collective pool of Bitcoin miners are 6119819470.16

times less likely to successfully hash 1 block attempt than the case with the largest target.

This difficulty metric gives us a method of directly comparing successful hashing probability. This

allows members of the bitcoin network to accurately adjust the difficulty so that the next set of 2016

blocks will be hashed in precisely 2 weeks. However, this estimation is based on the assumption that

mining activity will remain constant, which is unlikely. However, it is also unlikely that the amount of

mining activity will substantially increase/decrease in the time it takes to successfully hash a set of 2016

blocks. [6]

7.3 High Hashing Rates

Typically to find a solution to a block, a nonce is incremented at every hash iteration. This is a problem

for mining rigs which can hash in the range of a couple Giga Hashes per second. The nonce is a 32 bit

integer which means that for every 232 iterations something needs to be changed in order to make more

unique hashing attempts. Other components that can be changed include the timestamp, but this is

only recorded in seconds so it is still possible to mine at a rate that it is unable to keep up with. One

additional way to add more to the blockheader is to change the number of transactions included in the

block, this will give a different unique merkle tree root for every combination of transactions added so

this solves the problem. Theoretically it is possible for the hash rate to become so great that one would

run out of possible combinations to hash and the bottleneck to successful mining would become your

ability to create more unique hashing inputs as opposed to the rate that you can actually hash at.
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