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k-means is a commonly-used classification algorithm, but is difficult to implement because it is computa-
tionally NP-hard. However, many heuristic algorithms, such as Lloyd’s k-means algorithm provide locally
optimal results with drastically less computational difficulty. In this paper, we will investigate one partic-
ular implementation of Lloyd’s algorithm that employs kd-trees. We explore k-means clustering using an
implementation of Lloyd’s algorithm within O(dn ∗ log(n)) time using a kd-tree that has O(n) nodes and
O(log(n)) depth.
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1. INTRODUCTION
k-means is a well-known clustering algorithm. It is used to segment N data points
in n-dimensional space are grouped into K mutually exclusive clusters, where K is
already known. k-means is an iterative approach to classification. At each iteration,
each data point is assigned to the cluster with the nearest mean point. The myriad of
applications where k-means serves as a useful method of classification are well-known
and established.

2. K -MEANS
The k-means algorithm partitions N data points into K mutually exclusive subsets Sj

each containing Nj points. The goal of k-means is to minimize the sum-of-squared dis-
tances between each data point and its corresponding geometric mean point µj . [Mac-
Queen et al. 1967]

J =
∑K

j=1

∑
n∈Sj

|xn − µj |2

Ideally, k-means produces a global minimum sum-of-squared distances J . However,
this is difficult to practically implement, and is computationally NP-hard [Mahajan
et al. 2009] [Aloise et al. 2009]. Instead, the local minimum J is computed with the
following recursive procedure: [Nigrin 1993]

3. LLOYD’S HEURISTIC ALGORITHM
Lloyd’s Generalized algorithm is one such iterative k-means approximation that con-
verges at a local optimum.
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ALGORITHM 1: k-means
1: procedure KMEANS
2: the data points are assigned at random to the K sets
3: while the centroid position changes do
4: recompute the centroid
5: reassign data points to their nearest centroid

end

Lloyd’s algorithm is based on the simple observation that the optimal place-
ment of a center is at the centroid of the associated cluster. Given any set
of k centers Z, for each center z ∈ Z, let V (z) denote its neighborhood, that
is, the set of data points for which z is the nearest neighbor. In geometric
terminology, V (z) is the set of data points lying in the Voronoi cell of z. Each
stage of Lloyd’s algorithm moves every center point z to the centroid of V (z)
and then updates V (z) by recomputing the distance from each point to its
nearest center. These steps are repeated until some convergence condition
is met. [Kanungo et al. 2002]

Lloyd’s algorithm can actually also be described by Algorithm 1 in the pseudo code
listed above.

However, a straightforward implementation of Lloyd’s algorithm is computation-
ally heavy. This is principally due to the cost of computing the nearest center adjacent
to each data point [Kanungo et al. 2002]. Knuth referred to this as the post office
problem [Knuth 1973].

4. KD-TREE IMPLEMENTATION
A kd-tree is a binary tree. Nodes within the tree are organized into k-dimensional
space. Each non-leaf represents a hierarchical subdivision of the into two hyperspaces
known as half-spaces using a hyperplane. The hyperplane is orthogonal to each dimen-
sional axis. Therefore, every node in the tree is associated with one of the k-dimensions.
According to [De Berg et al. 2000], a kd-tree is subject to the following two constraints:

(1) The depth of each node corresponds to axis that its hyperplane separates
— Each step down the tree increments the axis that is being described from axis1

to axisk
— The axis-depth cycles repeats after axisk

(2) Points are inserted into the kd-tree using the median value associated with the
axis-determined hyperplane
— This allows the entire data set to be inserted into the tree initially

The authors of [Kanungo et al. 2002] design an algorithm employs a kd-tree to store
data points. The intuition is that a kd-tree need be built only once for a set of data
points. However, the idea of storing points in a kd-tree for clustering is not new. This
idea has been previously presented for classification purposes by A. Moore [Moore
1999], Alsabti [Alsabti et al. 1997], Kanungo in previous works [Kanungo et al. 1999],
and many others.

This paper explores the implementation of Lloyd’s algorithm by [Kanungo et al.
2002], where a kd-tree is used to maintain a subset of candidate centers for each node
of the tree. The advantage of the kd-tree is principally the storing of multidimensional
data points. Each data point belongs to a axis-aligned hyper-rectangle known as a box.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article , Publication date: May 2014.



Analysis of Lloyds k-Means Clustering Algorithm using kd-Trees :3

Each of the k clusters is defined by its box. A bounding box refers to the smallest box
that contains all of the respective points. The axis-aligned splitting hyperplanes found
in kd-trees define each point set’s bounding box. Given textitn points, this produces a
kd-tree with O(n) nodes and O(log(n)) depth.

For any k-means estimation, the weighted centroid of each of the k regions must be
calculated at each iteration. This corresponds to the k bounding boxes built into the
kd-tree. Furthermore, for each of the k centers, the set of data points for which this
centroid is closest must also be calculated. The algorithm described by [Kanungo et al.
2002] computes weighted centroid CW defined to be the vector sum its associated data
points, and the actual number of associated data points Nk. The actual centroid CA is
then simply CW /Nk .

Each node in the kd-tree has an associated set of potential candidate centers.
Each set contains the list of center points Z that could potentially serve as the nearest
neighbor for a respective point. All k centers are candidate centers for the root. Let
B denote the closed bounding box associated with each node. For each node, the
candidate center z0 that is closest to the midpoint of B is first computed and added to
the set Z. Then, each other potential candidate center z is considered. If no part of the
bounding box B is closer to each new candidate center than the original, they are not
added to that node’s candidate center set Z. This allows the authors of [Kanungo et al.
2002] to filter each impossible candidate center z from an entire set of nodes. This is
enabled by the hierarchically-sorted nature of the kd-tree. Once a node contains only
one candidate center z within its set of potential candidate centers Z, that node is
assigned to the remaining z.

To compare the distances between candidate centers z to any part of B, the ver-
tex of B that maximizes the vector distance between candidate centers is computed.
The squared distance between each candidate center and the closest section of B are
compared with one another. Whichever candidate center z has the minimal squared
distance is added to Z, which the further center is removed. If two candidates lie
within the cell, this approach will select the candidate that is closer to the cell’s
midpoint.

Efficiency is achieved because the data points do not vary throughout the
computation and, hence, this data structure does not need to be recomputed
at each stage. [Kanungo et al. 2002]

The authors of [Kanungo et al. 2002] implement their algorithm using a modified kd-
tree that subscribes to the following condition: The cells have bounded aspect ratio and,
with every 2d levels of descent in the tree, the sizes of the associated cells decrease by at
least a factor of 1=2.

5. ANALYSIS
A node is considered visited if and only if the candidate filtering process is invoked
on it. The upper bounds on the computation time of the algorithm are based on the
following:

(1) The time needed to process each node is proportional to the number of candidates
for the node
— This is at most k

— but is typically much smaller
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(2) Therefore, the total running time of the algorithm is larger by an upper bound
factor of k

(3) The total run time includes the time needed to build the modified initial kd-tree.
— This upper bound is O(dn∗log(n)), where d represents the number of dimensions

The authors of [Kanungo et al. 2002] are able to perform k-means clustering using an
implementation of Lloyd’s algorithm within O(dn ∗ log(n)) time using a kd-tree that
has O(n) nodes and O(log(n)) depth.

6. CONCLUSION
True k-means clustering is a computationally expensive procedure. Many approxima-
tions such as Lloyd’s algorithm are much more computationally attractive approxima-
tions that converge to a local optimum. The authors of [Kanungo et al. 2002] design and
describe an implementation of Lloyd’s algorithm that stores data points in a kd-tree.
Initial centroid points are chosen at random. At each iteration, the nearest centroid to
each data point must be computed. After that, a new centroid is computed based on the
associated neighboring node set. In this implementation, a subset of candidate centers
Z is maintained for each node in the kd-tree. The candidate centroids z for each node
are filtered as they are propagated to the node’s children. The real advantage of this
approach lies in the fact that the kd-tree is computed for the data points rather than
for the centers. Therefore, the kd-tree structure need not be updated at each iteration.
This allows for an implementation of Lloyd’s algorithm within O(dn∗log(n)) time using
a kd-tree that has O(n) nodes and O(log(n)) depth, where d represents the number of
dimensions present in the data space.
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